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Validity of the method of small parameter [l] for approximate solution of a 
class of optimal control problems is proved, and its rate of convergence is 
estimated, 

1. Statement of the problem, Let us consider the weakly controllable 
system 

r’= 1” (2, t) + ap (x, t, U), e E 10, 61, u E u (1.1) 

where ris an n -dimensional vector, uis the r-dimensional control vector, e is a posi- 
tive parameter, and U is a compact set in the r-dimensional Euclidean space. The 

process is assumed to begin at the fixed point 

x (to) = -0 (1.2) 

We call function u (t) admissible control, if it is measurable in u (t) E u for all 
r. We denote by z,” (t) the solution of the Cauchy problem for Eq.( 1.1) with initial 

condition (1.2 ) and fixed admissible control u (r) and E E (0, 61 and by T,’ the first 
instant of time at which trajectory zuE (r) reaches surface g (3, t) = 0, where g (2, t) 
is some scalar function, i. e. T,’ is the minimum solution of equation 

I? (GE (0, r) = 9, t > to (1.3) 

Let us formulate the following variational problem : for a given E@, 61 find 
function ue (t) (the optimal solution) that would yield the minimum of functional 

Ju” = P (zUe (T,E), T,“) 
(1.4) 

for all possible admissible control functions u (t). In this formula F (s, 1) is some 
scalar function. 

The distinctive feature of this problem is in that system (1.1) becomes uncontrol- 

lable (i.e. independent of u) , if parameter E vanishes. 
Let us assume that an optimal control us (1) exists for all eE (9, 61. We denote 

by xe (t) at TE the optimal trajectory at the instant of completion of the optimal pro- 

cess . In that case the necessary conditions of optimality are defined as follows. There 

exists a vector function pe (1) such that 

p” = - ‘i?H (xe (t), t, ue (t), pe (t), E) 
(1.5) 

(1.6 1 
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where 
H 6% 4 % PS &I = cp, P (St tf) + E (p, p (3, t, u)) 

F# = Ff (% 4 + (VP (2, t), $ (z, t) + ef (z, t, u)} 

Function g’ is defined similarly to F’ , Obviously g’and F’ are total derivatives 
of functions g and F along the trajectory of system (1.1). 

The method of small parameter is applied as follows [ 11. We formally set in (1.1) 
E = 0, which yields the Cauchy problem : z’ = f’ Iz, t) and I (to) = TV. We denote 

its s01uti0n by z” (r) and determine the instant of time 2’” as the first root of equation 

g (3’ (t), t) = 0. We then set E = 0 in the right-hand side-s of formulas (1.5 ) and (1. 6 ). 
As the result we have 

p’=---J4A”(Qp 

t 

where A (t) = af” (so (t), t) / ax, is a matrix with components afio (.P (t), t) / arj, and 
A* (t) is the transposed matrix. 

We denote the solution of this Cauchy problem by P” (t), and then use the notation 

he (& 4 = (P8 I& P (2” (4, t, u)), h” (t, 4 = (p” (tf, i’ (ZP (t) t, 24)) 

It is fairly clear that 8 (t) = x0 (t) -)_ 0 (e), and pe (t) = pa (t) + 0 (8). Hence 
h” (t, u) = h* (t, u) -f- 0 (8). This makes it reasonable to seek the approximate optimal 
control ue (t) as the solution of an equation of the form 

I)” (t. U) ==:g; h” (t, 20 (1.9) 

We denote by LP (t) the function which yields the maximum of h” (t. u) in the 

set U . Evidently ~8’ (1) EU and , furthermore, it is possible to Show that function I.P (t) 

is measureable (the particular case of Filippov ‘s lemma in [ 2 J ). Hence u” (t) is an 

admissible control. Function u” (t) that satisfies (1.9) may not be unique, and in such 
case we take an arbitrary function that satisifes Eq. (1.9)+ 

We are faced with the problem of determining the relation of the formally derived 

control u” (4 to the optimal control tie (l). If we take an arbitrary admissible control 

u (t), then JtE - J,” = 0 (6) uniformly with respect to u (t), since zUC (t) - $0 (t) = 0 (E). 

It is shown below that on some fairly general assumptions Jze - J,.’ = 0 (E2). 

2, Auxillfary statementa. Let the following conditions be satisfied : 
1) functions p (z, 2) and 1’ (z, I, a) are twice con~~u~~y differentiable with 

respect to LZ and continuous with respect to (t, ~1; 
2) function g (CC, 1) is twice continuously differentiable with respect to (z, f), and 

function qF” (t) -_ fi (x0 (t), t) vanishes at instant To > to, while ‘p” (t) # 0 for t E 
Sk,, To) and 

$‘(T”)#O 
(2.1) 

3) There exists such constant b > 0 that for all E, EE [0, S] and all admissible 
u ft) and any t E It0, I”*], where T* is a certain instant of time greater than T”, the 

inequality 

I ZUE (W b (2.2) 
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is valid. 

4 ) function F (5, t) is twice continuously differentiable, and 

5 ) an optimal control ue exists for all e E (0, 61 . Under conditions 1) - 5) 
the following lemmas are satisfied. 

Le mm a 1. For all E E [O, 61 and any admissible u (t) 

3$(t) = 5’ (t) + EZU1 (t) + 0 (E2) 
(2.3) 

where zul (t) is the solution of equation 

5=1’ = A (t) zur + f’ (5” (t), t, 1L (Q), zul (to) = 0 (2.4) 

Estimate (2.3 > is to be understood as proving the existence of a p > 0 indepen - 
dent of E E IO, 61, of the admissible control u (t) and of t E [to, T*l, and such that 

( fi is a conat* ) ]5$ (t) - X0 (t) - &52 (t) I< EZB, t E [to, T*] 

The proof of Lemma 1 is obtained by applying conventional reasoning used for 
proving expansions of solutions of regularly perturbed differential equations in series in 
a small parameter. The double continuous differentiability of functions p and f with 

respect to x makes possible the expansion of zcue (t) to within 9, and Eq . (2.4 ) for 
z,,l (t) is obtained by obvious means, while the uniformity of estimate (2.3 ) with res- 

pect to admissible u (t) ( i. e. the independence of constant fi of the selection of u (t)) 

is established using the uniform boundedness of trajectories of Eq. (1.1) in [to, T*l, 
i. e. using the inequality (2.2 ). 

Lemma 2. There exists number 6*, 0 < 6* < 8, such that for all E E [0, E*] 
and any admissible u (t) there exists an instant of time T,,e at which the trajectory 

zUE (r) reaches surface E$ (2, t) = 0 and T,” < T*. 

‘I-he meaning of this lemma is fairly clear. Since all trajectories of Eq. (1.1) lie 
in the e -neighborhood of trajectory x0 (t) which enters “fairly normally” the terminal 

surface at instant of time To (by virtue of inequality (2.1))) hence for fairly small E 
all trajectories also reach the terminal surface at instant of time T,’ which differs from 
T” by a quantity of order E. 

Lemma 3. For any e E 10, 6*1 and all admissible u (r) 

Tue = 2’” + ET,l + 0 (E’) (2.5) 

uniformly with respect to u (t), where 

TU’ = - (vg (zO (TO), TO), zul (TO)) / CP’O (TO) (2. i;) 

Proof. Using estimate (2.3 ) and condition 2 ) we obtain 

cp,” (t) z R (zue (t), t) = cp” (t) + e (vg (IO (t), 9, zf (0) + 0 (e?) 

cpue (T,*) = 0 = ‘po (Tue) + e (vg (20 (Tue), Tue), 52: (T,‘)) + 0 (a? 

We seek Tue of the form Tue = To + ET,1 + 0 (G). Formula (2.6 ) is then rea- 

dily obtainable. The uniformity of estimate (2.5 ) is proved using the continuous dif - 

ferentiability of function cp” (t) and condition (2.2 ). 

Lemma 4. For any 8 E [0, 6*] and all admissible u (t) 
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J$ = F (2 (TO), T”) - e (p” (P), x211 (T”)) + 0 (89 (2. ’ 1 

uniformly with respect to u (t) and P” (To) determined by the right-hand side of thesecond 
formula (1.8 ). 

PI o o f . Using estimate (2.3 > and condition 4 > we obtain 

Jue = F (so (To), 7”) + a [Y (2’ (7‘“) r”) I”,’ + (ok’ (50 (TO), TO), “,I (To))] +’ 

0 (@) 

and the substitution of T-1 from (2.6) into this formulas yields (2.7 ) 

Lemma 5. For all E E (0, S*I 

PE (t) = P0 (t) 4 0 (El (2.3 1 

uniformly with respect to t E Ito, T*] 

The proof of this lemma directly follows from the double continuous differentiability 
offunctions F, g, j”, and f1 with respect to 3c and estimates (2.3 > and (2.5 >. 

Using the notation Toe = min {To, TE] we obviously have ~0 - Tue = 0 (E). 

L e m ma 6. There exists a constant x > 0 such that 

0 < ho (t, 2 (d)) - h* (t, P(t)) < zex, E E (0, f)*1, t E It,, r”e) (2.9 1 

Proof, The smoothness of function 11 and estimates (2.3 ), (2.5 1, and (2.8 1 im- 
ply the existence of some constant x > 0 such that 

1 he (t, u) - h” (t, I() 1 -< EX, t E [to, f”j, E E (0, fi*], ,I. E u 

which yields 

h”(t. u”(t)) - h’ (t, It& (I)) < ex, V(t, u”(t))--e(t, u”(Q)< EX, 

Furthermore by virtue of (1.7 ) hE (t, u” (t)) - he (t, UE (t)) < 0. Adding the last 
three inequalities we obtain 

h” (t, u* (t)) - ho (t, UE (t)) < 2eX 

and since ue (t) is the solution of Eq. (1.9), this yields estimate (2.9). 

3, The basic theorem. Whenconditions 1) - 5) are satisfied, then 

JUI - J$ = 0 (fq, E E (0, a*] (3.1) 

Pro of . From (2.7 ) using the notation A%’ (t) = z’,. (t) - Z& (t) we have 

JZe - J$ = e W (w, ~2’ (WI + o (~2) = e 7 [(pa. (t), ,.1x1 (t)) + 

(P’ (t), Ad* !t))] dt -+- 0 (82) 
10 

Substituting in this formula 

p0.z - A*pO, AtiE” = A Ahzt + #l (zc” (t)l t, u0 (t)) - f (r*(t), 2, ue (tff 
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we obtain the expression 

.P,--J$=e s [la” (4 u” (t)) - ho (t, ue (t))]dt+ 

10 
TO 

e s 
Toe 

@” (t, u” (t)) - il’ (t, ue @))I I& + 0 (es) 

Since in the last formula the integrand of the first integral is by Lemma 6 of order 
e, while that of the second integral is necessarily bounded and the integration interval 

is of order 8,hence the whole right-hand side of that formula is of order aa. The theo- 

rem is proved. 

The author thanks F . L. Chemous ‘ko for constructive criticism in the course of 
preparation of this paper. 
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